Abstract
Hydroxamic acids have been reported to be potent and specific inhibitors of urease (EC 3.5.1.5) activity of plant and bacterial origin. The present investigation was performed on the inhibitory effect of hydroxamic acid derivatives of naturally occurring amino acids on the urease activity of the Jack Bean and the alimentary tracts of rats. Methionine-hydroxamic acid was the most powerful inhibitor (I50=3.9 X 10(-6) M) among nineteen alpha-aminoacyl hydroxamic acids. Phenylalanine-, serine-, alanine-, glycine-, histidine-, threonine-, leucine-, and arginine-hydroxamic acids followed, in order of decreasing inhibitory power. The inhibition proceeded with time at a comparable rate to fatty acyl hydroxamic acid inhibition. The I50 values of alpha-aminoacyl hydroxamic acids were found to be almost equal to those of the corresponding fatty acyl hydroxamic acids. This fact shows that the alpha-amino group did not affect inhibitory power. However, aspartic-beta-, lysine-, and glutamic-gamma-hydroxamic acids, in descending order, were much less inhibitory, probably due to the presence of a carboxyl or omega-amino group. Furthermore, the pH optimum of the inhibition shifted to lower pH in the presence of a carboxyl group, and to a higher pH in e presence of an amino group. The results suggest that the dissociation of an acidic or a basic group reduces the inhibitory power of hydroxamic acid. Hydroxamic acid inhibits urease activity with strict specificity, excpet for aspartic-beta-hydroxamic acid, which inhibited asparaginase competitively. Hydroxamic acid derivatives of amino acids inhibited not only the urease activity of the Jack Bean, but also that of the caecum and ileum parts of the rat intestine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.