Abstract
Cutaneous photodamage is incited via exposure of ultraviolet-B (UV-B) radiation to skin, characterized by the manifestation of oxidative stress, inflammation, collagen degradation and apoptosis which translates to external aging signs such as wrinkle formation and leathery skin appearance. Meanwhile, it increases cellular susceptibility to photocarcinogenesis. Several studies have accumulated evidence regarding the usage of natural agents in reversing the clinical signs of photoaging as well as preventing photo-toxicity at molecular level. In this study, we have explored the therapeutic potential of natural agent Trigonelline (TG) against UV-B radiation mediated skin photodamage. Various parameters modulated by the exposure of UV-B radiation were investigated in human skin cells and chronic photodamage mice model (Balb/c). We found that TG alleviates UV-B radiation induced photodamage in human skin cells and Balb/c skin mice. TG treatment in UV-B irradiated skin cells abates UV-B radiation mediated phototoxicity, oxidative stress, inflammation and apoptosis. At molecular level, we observed TG treatment significantly prevents the reactive oxygen species (ROS) generation and lipid peroxidation, restores collagen synthesis and matrix metalloproteinase (MMPs) levels. The in vitro findings were replicated in the in vivo model. We found that the TG acts potentially via modulation of ROS-MAPKs-NF-κB axis. Collectively, we propose that TG acts antagonistically against UV-B mediated skin damage and has strong potential to be developed as a therapeutic and cosmetical agent against photodamage disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.