Abstract

BackgroundMycobacterium bovis (M. bovis) is the principal causative agent of bovine tuberculosis; however, it may also cause serious infection in human being. Type I IFN is a key factor in reducing viral multiplication and modulating host immune response against viral infection. However, the regulatory pathways of Type I IFN signaling during M. bovis infection are not yet fully explored. Here, we investigate the role of Type I IFN signaling in the pathogenesis of M. bovis infection in mice.MethodsC57BL/6 mice were treated with IFNAR1-blocking antibody or Isotype control 24 h before M. bovis infection. After 21 and 84 days of infection, mice were sacrificed and the role of Type I IFN signaling in the pathogenesis of M. bovis was investigated. ELISA and qRT-PCR were performed to detect the expression of Type I IFNs and related genes. Lung lesions induced by M. bovis were assessed by histopathological examination. Viable bacterial count was determined by CFU assay.ResultsWe observed an abundant expression of Type I IFNs in the serum and lung tissues of M. bovis infected mice. In vivo blockade of Type I IFN signaling reduced the recruitment of neutrophils to the lung tissue, mediated the activation of macrophages leading to an increased pro-inflammatory profile and regulated the inflammatory cytokine production. However, no impact was observed on T cell activation and recruitment in the early acute phase of infection. Additionally, blocking of type I IFN signaling reduced bacterial burden in the infected mice as compared to untreated infected mice.ConclusionsAltogether, our results reveal that Type I IFN mediates a balance between M. bovis-mediated inflammatory reaction and host defense mechanism. Thus, modulating Type I IFN signaling could be exploited as a therapeutic strategy against a large repertoire of inflammatory disorders including tuberculosis.

Highlights

  • Mycobacterium bovis (M. bovis) is the principal causative agent of bovine tuberculosis; it may cause serious infection in human being

  • The induction of type I interferon during M. bovis infection In order to identify Type I interferon signaling that is critical for the pathogenesis of M. bovis, we infected C57BL/6 mice with virulent M. bovis by intranasal route (i.n)

  • Consistent with flow cytometry assay, histological assay revealed a noticeable reduction in the population of neutrophils in the lung sections of αIFNAR1 mice at day 21 post-infection (Fig. 4g and h). These findings suggest that Type I Type I interferon (IFN) produced locally in lungs plays a significantly role in the migration of neutrophils to the lungs in the early phase of M. bovis infection

Read more

Summary

Introduction

Mycobacterium bovis (M. bovis) is the principal causative agent of bovine tuberculosis; it may cause serious infection in human being. Type I IFN is a key factor in reducing viral multiplication and modulating host immune response against viral infection. The regulatory pathways of Type I IFN signaling during M. bovis infection are not yet fully explored. We investigate the role of Type I IFN signaling in the pathogenesis of M. bovis infection in mice. Tuberculosis is one of the major public health problems and it is caused by Mycobacterium tuberculosis (M. tuberculosis). The family of Type I IFN comprises of a dozen IFN-α subtypes, IFN-β, as well as IFN-ε, IFN-κ, and IFN-δ which are secreted upon attachment of infectious agents to the pattern-recognition receptors (PPRs) of host cells [7]. Increasing evidences suggest that IFN-β has a high binding capability to the specified receptors of IFNs for signal generation and the induction of downstream gene expression [9]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.