Abstract

The chitin synthetase (CS) of Tribolium castaneum gut is inhibited 50% by 0.02 μ M nikkomycin and 4 μ M polyoxin D, two pyrimidine nucleoside fungicides, in in vitro assays with 10-min preincubation of enzyme and inhibitor prior to substrate addition. Tribolium CS is also sensitive to inhibition by the pyrimidine nucleotides uridine and cytidine di- and triphosphates. Captan, a known inhibitor of insect chitin synthesis, and the related fungicides captafol and dichlofluanid are highly potent inhibitors of Tribolium CS. Moderately active CS inhibitors are the acaricide oxythioquinox and the herbicide barban. One phenylcarbamate insect growth reatardant, H-24108, is weakly active in inhibiting Tribolium gut CS, as are three of its analogs but not 26 others. Many triazines are not inhibitory including several herbicides and an azido derivative, CGA 19255, which is active in blocking insect growth and chitin synthesis. Although the benzoylphenyl urea insecticides diflubenzuron and SIR 8514 are potent in vivo inhibitors of the polymerization step in insect chitin synthesis, they do not affect T. castaneum gut CS activity in vitro and greatly stimulate Tribolium brevicornis gut CS activity in vivo. These studies and preliminary findings on an integumental enzyme indicate that CS of these tissues is not sensitive to the direct action of benzoylphenyl ureas. This leads to speculation that the benzoylphenyl ureas act either as CS inhibitors via active metabolites formed in the integument or as blocking agents by direct binding to non-CS sites important in chitin polymerization and fibrillogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call