Abstract

Cross-linking of lysine residues in elastic and collagen fibers is a vital process in aortic development. Inhibition of lysyl oxidase by BAPN (β-aminopropionitrile) leads to thoracic aortopathies in mice. Although the renin-angiotensin system contributes to several types of thoracic aortopathies, it remains unclear whether inhibition of the renin-angiotensin system protects against aortopathy caused by the impairment of elastic fiber/collagen crosslinking. BAPN (0.5% wt/vol) was started in drinking water to induce aortopathies in male C57BL/6J mice at 4 weeks of age for 4 weeks. Five approaches were used to investigate the impact of the renin-angiotensin system. Bulk RNA sequencing was performed to explore potential molecular mechanisms of BAPN-induced thoracic aortopathies. Losartan increased plasma renin concentrations significantly, compared with vehicle-infused mice, indicating effective angiotensin II type 1 receptor inhibition. However, losartan did not suppress BAPN-induced aortic rupture and dilatation. Since losartan is a surmountable inhibitor of the renin-angiotensin system, irbesartan, an insurmountable inhibitor, was also tested. Although increased plasma renin concentrations indicated effective inhibition, irbesartan did not ameliorate aortic rupture and dilatation in BAPN-administered mice. Thus, BAPN-induced thoracic aortopathies were refractory to angiotensin II type 1 receptor blockade. Next, we inhibited angiotensin II production by pharmacological or genetic depletion of AGT (angiotensinogen), the unique precursor of angiotensin II. However, neither suppressed BAPN-induced thoracic aortic rupture and dilatation. Aortic RNA sequencing revealed molecular changes during BAPN administration that were distinct from other types of aortopathies in which angiotensin II type 1 receptor inhibition protects against aneurysm formation. Inhibition of either angiotensin II action or production of the renin-angiotensin system does not attenuate BAPN-induced thoracic aortopathies in mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call