Abstract

Prohormone convertases (PCs) are endoproteases that process many substrates in addition to hormone precursors. Although overexpression of PCs is linked to carcinogenesis in some solid tumors, the role of subtilisin-kexin isoenzyme-1 (SKI-1) in this context is unknown. We show that SKI-1 is constitutively expressed in human pigment cells with higher SKI activity in seven out of eight melanoma cell lines compared with normal melanocytes. SKI-1 immunoreactivity is also detectable in tumor cells of melanoma metastases. Moreover, tissue samples of the latter display higher SKI-1 mRNA levels and activity than normal skin. From various stimuli tested, 12-O-tetradecanoylphorbol-13-acetate and tunicamycin affected SKI-1 expression. Importantly, SKI-1 inhibition by the cell-permeable enzyme inhibitor decanoyl-RRLL-chloromethylketone (dec-RRLL-CMK) not only suppressed proliferation and metabolic activity of melanoma cells in vitro but also reduced tumor growth of melanoma cells injected intracutaneously into immunodeficient mice. Mechanistic studies revealed that dec-RRLL-CMK induces classical apoptosis of melanoma cells in vitro and affects expression of several SKI-1 target genes including activating transcription factor 6 (ATF6). However, ATF6 gene silencing does not result in apoptosis of melanoma cells, suggesting that dec-RRLL-CMK induces cell death in an ATF6-independent manner. Our findings encourage further studies on SKI-1 as a potential target for melanoma therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.