Abstract
A comparative kinetic study of the peroxidase oxidation of three chromogenic substrates--2,2'-azino-bis(3-ethyl-2,3-dihydrobenzothiazoline-6-sulfonic acid), o-phenylenediamine (PDA), and 3,3',5,5'-tetramethylbenzidine--inhibited by trimethylhydroquinone and six tert-butylated pyrocatechols (InH) was carried out at 20 degrees C in 0.015 M phosphate-citrate buffer (pH 6.0) containing organic cosolvents (0-10% ethanol or DMF). The inhibitors were quantitatively characterized by the inhibition constants (Ki), the duration of the lag period in the oxidation product formation (delta tau), and the stoichiometric coefficient of inhibition that specifies the number of radicals terminated by one InH molecule (f). The inhibition could be competitive, noncompetitive, mixed, or uncompetitive, which depended on the nature and structure of the chromogenic substrate-diatomic phenol pair. Various substrate-diatomic phenol pairs exhibited Ki values within the range of 11-240 microM and f values from 0.7 to 2.6. The absence of a lag period was characteristic of oxidation of the substituted o-phenylenediamine-substituted pyrocatechol. The total kinetic parameters and properties of the components allowed us to suggest six chromogenic substrate-substituted diatomic phenol pairs for use in test systems for the determination of antioxidant activity in human body fluids, natural biological preparations, and food. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 5; see also http: // www.maik.ru.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.