Abstract

The degeneration of retinal pigment epithelium (RPE) cells in the sub retinal pigment epithelial space and choroid is an initial pathological characteristic for the age-related macular degeneration which is the leading cause of severe vision loss in old people. Moreover, oxidative stress is implicated as a major inducer of RPE cell death. Here, we assessed the correlation between the H2O2-induced RPE cell death and glutamine metabolism. We found under low glutamine supply (20%), the ARPE-19 cells were more susceptive to H2O2-induced apoptosis. Moreover, the glutamine uptake and the glutaminase (GLS) were suppressed by H2O2 treatments. Moreover, we observed miR-23a was upregulated by H2O2 treatments and overexpression of miR-23a significantly sensitized ARPE-19 cells to H2O2. Importantly, Western blotting and luciferase assay demonstrated GLS1 is a direct target of miR-23a in RPE cells. Inhibition of the H2O2-induced miR-23a by antagomiR protected the RPE cells from the oxidative stress-induced cell death. In addition, recovery of GLS1 expression in miR-23a overexpressed RPE cells rescued the H2O2-induced cell death. This study illustrated a mechanism for the protection of the oxidative-induced RPE cell death through the recovery of glutamine metabolism by inhibition of miR-23a, contributing to the discovery of novel targets and the developments of therapeutic strategies for the prevention of RPE cells from oxidative stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call