Abstract
When olfactory receptor neurons are exposed to sustained application of odours, the elicited ionic current is transient. This adaptation-like effect appears to require the influx of Ca2+ through the odour-sensitive conductance; in the absence of extracellular Ca2+ the current remains sustained. Odour transduction proceeds through a G-protein-based second messenger system, resulting finally in the direct activation of an ion channel by cyclic AMP. This channel is one possible site for a negative feedback loop using Ca2+ as a messenger. In recordings of single cyclic AMP gated channels from olfactory receptor neurons, the open probability of the channel in saturating cAMP concentrations was dependent on the concentration of intracellular Ca2+. It could be reduced from 0.6 in 100 nm Ca2+ to 0.09 in 3 microM Ca2+. However, as neither the single channel conductance nor the mean open time were affected by Ca+ concentration, this does not appear to be a mechanism of simple channel block. Rather, these results suggest that intracellular Ca2+ acts allosterically to stabilize a closed state of the channel.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of London. Series B: Biological Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.