Abstract

The ability of a recombinant Mycobacterium bovis BCG strain that secretes major membrane protein II (MMP-II) of Mycobacterium leprae (BCG-SM) to confer protection against leprosy was evaluated by use of a mouse footpad model. C57BL/6J mice intradermally inoculated with BCG-SM produced splenic T cells which secreted significant amounts of gamma interferon (IFN-gamma) in response to either the recombinant MMP-II, the M. leprae-derived membrane fraction, or the BCG-derived cytosolic fraction in vitro more efficiently than those from the mice infected with the vector control BCG strain (BCG-pMV, a BCG strain containing pMV-261). A higher percentage of CD8(+) T cells obtained from BCG-SM-inoculated mice than those obtained from BCG-pMV-inoculated mice produced intracellular IFN-gamma on restimulation with the M. leprae antigens. BCG-SM inhibited the multiplication of M. leprae in the footpads of C57BL/6J mice more efficiently than BCG-pMV. These results indicate that a BCG strain that secretes MMP-II could be a better vaccine candidate for leprosy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call