Abstract

Hepatocellular carcinoma (HCC) is characterized by high drug resistance to currently available chemotherapeutic agents. In a prospective clinical study, we have demonstrated that high-dose tamoxifen significantly enhanced the therapeutic efficacy of doxorubicin in patients with far-advanced HCC. In a search for a possible mechanism, we found that tamoxifen at a clinically achievable concentration (2.5 μM) significantly enhanced doxorubicin-induced cytotoxicity and apoptosis of Hep-3B cells, a multidrug resistance (MDR)-1 expressing HCC cell line. This synergistic cytotoxic effect of tamoxifen, at this concentration, however, was not mediated by MDR inhibition. Instead, as evidenced by both western blot and immunofluorescence studies, tamoxifen inhibited the cytoplasmic-membrane translocation of protein kinase C (PKC)-α. 12-O-Tetradecanoylphorbol-13-acetate (TPA) restored the membrane translocation of PKC-α and abrogated the synergistic cytotoxicity of tamoxifen. We also showed that tamoxifen, at this concentration, did not directly affect the enzyme activity of PKC. Further, membrane translocation of other membrane-bound proteins, such as Ras protein, was similarly inhibited by tamoxifen, but could not be restored by the addition of TPA. Together, these data suggested that tamoxifen may act on the cytoplasmic membrane, and thereby inhibit PKC-α translocation to the membrane where it is activated. We hypothesize that high-dose tamoxifen may be an effective modulator of doxorubicin in the treatment of HCC, and suggest that biochemical modulation of PKC as a measure to improve systemic chemotherapy for HCC deserves further investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.