Abstract

This study delves into the therapeutic efficacy of A. pyrethrum in addressing vitiligo, a chronic inflammatory disorder known for inducing psychological distress and elevating susceptibility to autoimmune diseases. Notably, JAK inhibitors have emerged as promising candidates for treating immune dermatoses, including vitiligo. Our investigation primarily focuses on the anti-vitiligo potential of A. pyrethrum root extract, specifically targeting N-alkyl-amides, utilizing computational methodologies. Density Functional Theory (DFT) is deployed to meticulously scrutinize molecular properties, while comprehensive evaluations of ADME-Tox properties for each molecule contribute to a nuanced understanding of their therapeutic viability, showcasing remarkable drug-like characteristics. Molecular docking analysis probes ligand interactions with pivotal site JAK1, with all compounds demonstrating significant interactions; notably, molecule 6 exhibits the most interactions with crucial inhibition residues. Molecular dynamics simulations over 500ns further validate the importance and sustainability of these interactions observed in molecular docking, favoring energetically both molecules 6 and 1; however, in terms of stability, the complex with molecule 6 outperforms others. DFT analyses elucidate the distribution of electron-rich oxygen atoms and electron-poor regions within heteroatoms-linked hydrogens. Remarkably, N-alkyl-amides extracted from A. pyrethrum roots exhibit similar compositions, yielding comparable DFT and Electrostatic Potential (ESP) results with subtle distinctions. These findings underscore the considerable potential of A. pyrethrum root extracts as a natural remedy for vitiligo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.