Abstract

The inhibition of the catechol oxidase activity exhibited by three dinuclear copper(II) complexes, derived from different diaminotetrabenzimidazole ligands, by kojic acid [5-hydroxy-2-(hydroxymethyl)-gamma-pyrone] has been studied. The catalytic mechanism of the catecholase reaction proceeds in two steps and for both of these inhibition by kojic acid is of competitive type. The inhibitor binds strongly to the dicopper(II) complex in the first step and to the dicopper-dioxygen adduct in the second step, preventing in both cases the binding of the catechol substrate. Binding studies of kojic acid to the dinuclear copper(II) complexes and a series of mononuclear analogs, carried out spectrophotometrically and by NMR, enable us to propose that the inhibitor acts as a bridging ligand between the metal centers in the dicopper(II) catalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.