Abstract

Many cancer treatments induce cell death through lethal oxidative stress. Oxidative stress also induces the activation of the calcium/calmodulin-dependent kinases (CaM-Ks), CaM-KII and CaM-KIV. In turn, the CaM-Ks are known to induce the activation of antiapoptotic signaling pathways, such as Akt, ERK, and NF-κB in many different cell types. The aim of this study was to determine the role of CaM-Kinases in resistance to hydrogen peroxide and three oxidative stress-inducing cancer therapies in MCF-7 breast cancer cells. We found that oxidative stress induced CaM-Kinase activity in MCF-7 breast cancer cells and that CaM-K inhibition increased hydrogen peroxide-induced cell death in MCF-7 human breast cancer cells. When MCF-7 cells were treated with doxorubicin, ionizing radiation, or photodynamic therapy in the presence of a CaM-K inhibitor a greater level of cell killing was observed than when cells were treated with doxorubicin, ionizing radiation, or photodynamic therapy alone. In support of this finding, CaM-K inhibition increased hydrogen peroxide-induced apoptosis in MCF-7 cells, as determined by increased number of apoptotic cells, DNA fragmentation, and PARP cleavage. Pharmacological and molecular inhibition indicated that CaM-KII was participating in hydrogen peroxide-induced ERK phosphorylation in breast cancer cells indicating a potential mechanism by which this sensitization occurs. This is the first time that CaM-K inhibition is reported to sensitize cancer cells to reactive oxygen intermediate inducing cancer treatments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call