Abstract

Calcineurin (Cn), a serine/threonine phosphatase, plays a crucial role in the development of myocardial hypertrophy. Cn is a cytosolic phosphatase which dephosphorylates various target molecules, e.g. the transcriptional factor nuclear factor of activated T cells (NFAT), thereby enabling its nuclear translocation. Recently, it was demonstrated that not only NFAT, but also Cn is translocated into the nucleus. The nuclear coexistence of Cn and NFAT is important for the full transcriptional activity of the Cn-NFAT signalling cascade. Once Cn and NFAT have entered the nucleus of cardiomyocytes, the transcription of genes characteristic for myocardial hypertrophy (e.g. BNP, ANP) is initiated. The nuclear localization sequence (NLS), a region spanning amino acids 172-183 of calcineurin Abeta (CnAbeta) is essential for recognition and shuttling of Cn into the nucleus by importinbeta (1). A synthetic import blocking peptide (IBP) that mimics the NLS of Cn was tested recently. The NLS analogon IBP saturates the Cn binding site of importinbeta(1) thereby preventing binding of Cn and importin. This inhibits the translocation of Cn into the nucleus. Inhibiting the Cn/importin interaction with competing synthetic peptides is one of several new approaches to prevent the development of myocardial hypertrophy. Several patents have also been filed on molecules related to inhibition of Cn-NFAT signalling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.