Abstract

Experiments were designed to investigate the mechanism underlying the endothelium-dependent relaxations to perindoprilat, a converting enzyme inhibitor, in canine coronary arteries previously exposed to bradykinin. Rings suspended in organ chambers were exposed to bradykinin for 3 min and washed extensively for 150 min. In rings previously exposed to the peptide, bradykinin induced relaxations which were augmented in the presence of perindoprilat; this response was not affected by indomethacin, but nitro-L-arginine induced a rightward shift of the relaxation to the peptide without affecting its maximal effect. In canine coronary arteries previously exposed to the peptide, perindoprilat caused endothelium-dependent relaxations (IC50 = 7.83), which had been observed previously at concentrations where the converting enzyme inhibitor did not augment the response to bradykinin. Carboxypeptidase B, but not aprotinin, impaired the relaxation to perindoprilat, suggesting a contribution of bradykinin. The relaxation to perindoprilat was not affected by the B1 antagonist Leu8-des-Arg9-bradykinin. However, the bradykinin B2 antagonist HOE-140 displayed a noncompetitive antagonism against the response to perindoprilat. The response to the converting enzyme inhibitor was not affected by indomethacin but was impaired significantly by nitro-L-arginine. The present findings suggest that in canine coronary arteries previously exposed to bradykinin, the relaxation to perindoprilat is mediated mainly by endothelium-derived nitric oxide. In addition, the response to perindoprilat may be due to factors other than just protection of bound bradykinin from degradation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.