Abstract
This study aimed to evaluate the efficiency with which Lactobacillus crispatus JCM 5810 inhibited the adhesion of enteric pathogens to a synthetic basement membrane and to elucidate the mechanism underlying the inhibition. Lactobacillus crispatus JCM 5810 inhibited the adhesion of three diarrhoeagenic Escherichia coli strains to a reconstituted basement membrane preparation called Matrigel, used as a model of a damaged intestinal tissue site. Inhibition was also observed with the use of immobilized laminin, a major component of Matrigel, but diminished after the removal of S-layer protein (CbsA) from JCM 5810 cells. The isolated CbsA inhibited the adhesion of E. coli to both Matrigel and immobilized laminin. Lactobacillus crispatus JCM 5810 and CbsA seem to inhibit pathogenic E. coli from adhering to basement membrane via competition with laminin molecules for binding sites. These results suggested that not only Lact. crispatus JCM 5810 cells but CbsA alone might prevent pathogens from colonizing damaged intestinal tissues. This is the first study to show the applied aspect of Lactobacillus S-layer protein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.