Abstract
ABSTRACT: Leaf-cutter ants (Hymenoptera: Formicidae) have evolved as dominant herbivores on the American continent. These social insects remove the leaves of economically important plant species to maintain their colony’s food reserves, the symbiotic fungus Leucocoprinus gongylophorus, a basidiomycete. Such fungus can be used for applications of fungicide molecules from metabolites generated by symbiont bacteria (Xenorhabdus and Photorhabdus) from entomopathogenic nematodes (Steinernema and Heterorhabditis). Through isolation and multiplication in tryptic soy broth (TSB) medium of the bacteria Xenorhabdus szentirmaii isolated PAM 25, we conducted laboratorial tests using treatments with 10, 25, and 50% of the metabolites obtained in the sixth day of cultivation. The treatments were centrifuged and filtered to generate a supernatant, which was diluted in potato + dextrose + agar (PDA), to verify the consequences of exposure to the fungus L. gongylophorus in Petri dishes. To confirm metabolite efficiency, the control treatments in PDA only and mixed (PDA+TSB) media were conducted simultaneously for 14 days. We observed total inhibition of the symbiont fungus in both the 25 and 50% dilutions during the first days of the tests. Our results support that these metabolites have inhibitory effect on the development of symbiont fungus of leaf-cutter ants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.