Abstract
Ceruloplasmin (CP) was found to inhibit xanthine oxidase and ferritin-dependent peroxidation of phospholipid liposomes, as evidenced by decreased malondialdehyde formation. Ceruloplasmin was also shown to inhibit superoxide-mediated mobilization of iron from ferritin, in a concentration-dependent manner, as measured spectrophotometrically using the iron(II) chelator bathophenanthroline sulfonate. Ceruloplasmin failed to function as a peroxyl radical-scavenging antioxidant as evidenced by its inability to inhibit free radical-initiated peroxidation of linoleic acid, suggesting that CP inhibited lipid peroxidation by affecting the availability of ferritin-derived iron. In addition, CP scavenged xanthine oxidase-derived superoxide as measured spectrophotometrically via its effect on cytochrome c reduction. However, the extent of the superoxide scavenging of CP did not quantitatively account for its effects on iron release, suggesting that CP inhibits superoxide-dependent mobilization of ferritin iron independently of its ability to scavenge superoxide. The effects of CP and apoferritin on iron-catalyzed lipid peroxidation in systems containing exogenously added ferrous iron was also investigated. In the absence of apoferritin, CP exhibited a concentration-dependent prooxidant effect. However, CP-dependent, iron-catalyzed lipid peroxidation was inhibited by the addition of apoferritin. Apoferritin did not function as a peroxyl radical-scavenging antioxidant but was shown to incorporate iron in the presence of CP. These data suggest that CP inhibits superoxide and ferritin-dependent lipid peroxidation largely via its ability to reincorporate reductively mobilized iron back into ferritin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.