Abstract

BackgroundSulfur mustard (SM) is a potent chemical vesicant warfare agent that remains a significant military and civilian threat. Inhalation of SM gas causes airway inflammation and injury. In recent years, there has been increasing evidence of the effectiveness of macrolide antibiotics in treating chronic airway inflammatory diseases. In this study, the anti-cytotoxic and anti-inflammatory effects of a representative macrolide antibiotic, roxithromycin, were tested in vitro using SM-exposed normal human small airway epithelial (SAE) cells and bronchial/tracheal epithelial (BTE) cells. Cell viability, expression of proinflammatory cytokines including interleukin (IL)-1β, IL-6, IL-8 and tumor necrosis factor (TNF), and expression of inducible nitric oxide synthase (iNOS) were examined, since these proinflammatory cytokines/mediators are import indicators of tissue inflammatory responses. We suggest that the influence of roxithromycin on SM-induced inflammatory reaction could play an important therapeutic role in the cytotoxicity exerted by this toxicant.ResultsMTS assay and Calcein AM/ethidium homodimer (EthD-1) fluorescence staining showed that roxithromycin decreased SM cytotoxicity in both SAE and BTE cells. Also, roxithromycin inhibited the SM-stimulated overproduction of the proinflammatory cytokines IL-1β, IL-6, IL-8 and TNF at both the protein level and the mRNA level, as measured by either enzyme-linked immunosorbent assay (ELISA) or real-time RT-PCR. In addition, roxithromycin inhibited the SM-induced overexpression of iNOS, as revealed by immunocytochemical analysis using quantum dots as the fluorophore.ConclusionThe present study demonstrates that roxithromycin has inhibitory effects on the cytotoxicity and inflammation provoked by SM in human respiratory epithelial cells. The decreased cytotoxicity in roxithromycin-treated cells likely depends on the ability of the macrolide to down-regulate the production of proinflammatory cytokines and/or mediators. The results obtained in this study suggest that macrolide antibiotics may serve as potential vesicant respiratory therapeutics through mechanisms independent of their antibacterial activity.

Highlights

  • Sulfur mustard (SM) is a potent chemical vesicant warfare agent that remains a significant military and civilian threat

  • In inducible nitric oxide synthase (iNOS) is the inducible isoform of nitric oxide synthase, the enzyme that catalyzes the synthesis of nitric oxide (NO), a short-lived free radical gas and a pleiotropic mediator involved in the regulation of vascular smooth muscle tone and proliferation, cell-mediated immunity, and inflammation [7,8]

  • In order to understand the mechanism of the protective effect of roxithromycin and verify if the decreased cytotoxicity is due, at least in part, to a reduced inflammation, we further evaluated the effect of roxithromycin on the expression of some inflammatory mediators, including proinflammatory cytokines and iNOS, at the mRNA and/or protein level

Read more

Summary

Introduction

Sulfur mustard (SM) is a potent chemical vesicant warfare agent that remains a significant military and civilian threat. There has been increasing evidence of the effectiveness of macrolide antibiotics in treating chronic airway inflammatory diseases. The anti-cytotoxic and anti-inflammatory effects of a representative macrolide antibiotic, roxithromycin, were tested in vitro using SM-exposed normal human small airway epithelial (SAE) cells and bronchial/tracheal epithelial (BTE) cells. Expression of proinflammatory cytokines including interleukin (IL)-1β, IL-6, IL-8 and tumor necrosis factor (TNF), and expression of inducible nitric oxide synthase (iNOS) were examined, since these proinflammatory cytokines/mediators are import indicators of tissue inflammatory responses. We suggest that the influence of roxithromycin on SM-induced inflammatory reaction could play an important therapeutic role in the cytotoxicity exerted by this toxicant

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.