Abstract

The influence of hydrogen and tar on the reaction rate of woody biomass char in steam gasification was investigated by varying the concentrations in a rapid-heating thermobalance reactor. It was observed that the steam gasification of biomass char can be separated into two periods. Compared with the first period, in the second period (in which the relative mass of remaining char is smaller than 0.4) the gasification rate is increased. These effects are probably due to inherent potassium catalyst. Higher hydrogen partial pressure greatly inhibits the gasification of biomass char in the first and second periods. By calculating the first-order rate constants of char gasification in the first and second periods, we found that the hydrogen inhibition on biomass char gasification is caused by the reverse oxygen exchange reaction in the first period. In the second period, dissociative hydrogen adsorption on the char is the major inhibition reaction. The influence of levoglucosan, a major tar component derived from cellulose, was also examined. We found that not only hydrogen but also vapor-phase levoglucosan and its pyrolysates inhibited the steam gasification of woody biomass char. By mixing levoglucosan with woody biomass sample, the pyrolysis of char proceeds slightly more rapidly than with woody biomass alone, and gas evolution rates of H2 and CO2 are larger in steam gasification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call