Abstract

The pattern of immune response to a vaccine antigen can influence both efficacy and adverse events. Th2-cell-deviated responses have been implicated in both human and murine susceptibility to enhanced disease following formalin-inactivated (FI) vaccines for measles and RSV. In this study, we used the Th2-cell-deviated murine model of FI-RSV vaccination to test the ability of a dominant negative, cell-penetrating peptide inhibitor of STAT6 (STAT6 inhibitory peptide (IP)) to modulate the vaccine-induced predisposition to exaggerated inflammation during later RSV infection. Intranasal delivery of STAT6-IP in BALB/c mice at the time of distal intramuscular FI-RSV vaccination (Early Intervention) markedly decreased vaccine-enhanced, Th2-cell-dependent pathology upon subsequent RSV challenge. Administration of the STAT6-IP at the time of RSV challenge (Late Intervention) had no effect. Following RSV challenge, the STAT6-IP-treated mice in the Early Intervention group had lower airway eosinophils, increased lung IFN-γ levels, as well as increased IFN-γ-secreting CD4(+) and CD8(+) cells in the lungs. Our findings demonstrate the feasibility of targeting intracellular signaling pathways as a new way to modulate vaccine-induced responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.