Abstract

Inhibition of stainless steel corrosion in 0.5 M H2SO4 by C6H5NH2 (Aniline) at different temperatures was experimentally studied in this paper. Corrosion rate measurements at 28°C, 45°C and 60°C were taken through linear sweep voltametry and utilised for modelling inhibition efficiency and thermodynamic properties in the acidic solution containing different concentrations of the organic chemical. Results showed that inhibition of stainless steel in 0.5 M H2SO4 increased with increasing temperature for most of the different concentrations of C6H5NH2 employed. Optimal inhibition efficiency ranged from η = 26.49% by 0.043 M C6H5NH2 at 28°C, through η = 88.99% by 0.021 M C6H5NH2 at 45°C up to η = 96.68% by 0.043 M C6H5NH2 at 60°C. Also, thermodynamic property analyses showed that apparent activating energy decreases from the uninhibited, 0 M C6H5NH2, to the optimally inhibiting 0.043 M C6H5NH2 containing medium, which suggests C6H5NH2 adsorption drives the inhibition effects observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.