Abstract

Traumatic brain injury (TBI) is often associated with intracerebral and intraventricular hemorrhage. Thrombin is a neurotoxin generated at bleeding sites fater TBI and can lead to cell death and subsequent cognitive dysfunction via activation of Src family kinases (SFKs). We hypothesize that inhibiting SFKs can protect hippocampal neurons and improve cognitive memory function after TBI. To test these hypotheses, we show that moderate lateral fluid percussion (LFP) TBI in adult rats produces bleeding into the cerebrospinal fluid (CSF) in both lateral ventricles, which elevates oxyhemoglobin and thrombin levels in the CSF, activates the SFK family member Fyn, and increases Rho-kinase 1(ROCK1) expression. Systemic administration of the SFK inhibitor, PP2, immediately after moderate TBI blocks ROCK1 expression, protects hippocampal CA2/3 neurons, and improves spatial memory function. These data suggest the possibility that inhibiting SFKs after TBI might improve clinical outcomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.