Abstract

PurposeCancer stem cells (CSCs) have been considered involving in tumorigenesis, local recurrence, and therapeutic drug resistance of hepatocellular carcinoma (HCC). To investigate novel and effective methods for targeting hepatic CSCs is crucial for a permanent cure of liver cancer.MethodsThe expression level of SIRT1 was detected in CSCs of HCC tissues and cancer cell lines. Expression of CSC markers, the self-renewal and tumorigenic ability of liver CSCs were analyzed with SIRT1 inhibition. Cellular senescence-related markers were used to detect CSCs senescence after inhibition of SIRT1.ResultsSIRT1 was highly expressed in CSCs of HCC cell lines and human HCC tissues. In vitro study revealed that decreasing of SIRT1 level significantly downregulated the stemness-associated genes of liver CSCs and reduced the CSC stemness properties. Also, downregulated SIRT1 suppressed liver CSCs proliferation by decreasing their self-renewal abilities. Furthermore, CSCs with decreased SIRT1 expression showed limited tumorigenicity and formed smaller HCC tumor in vivo. And SIRT1 decreased CSCs became more susceptible to chemotherapeutic drugs. Mechanistically, SIRT1 decreased CSCs became senescence through the activation of p53-p21 and p16 pathway. The data further indicated that the tumor formed from SIRT1-knockdown CSCs exhibited higher senescence-associated β-galactosidase (SA-β-Gal) activity but lower proliferative capacity.ConclusionTaken together, these findings pointed that induction of senescence in liver CSCs is an effective tumor suppression method for HCC, and SIRT1 may be served as a promising target for HCC treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call