Abstract

The effects of ultraviolet light (uv) upon SV40 DNA synthesis in monkey cells were examined to determine whether replication forks were halted upon encountering lesions in the DNA, or alternatively whether lesions were rapidly bypassed. Ultraviolet light inhibits elongation of nascent DNA strands; the extent of incorporation of [ 3H]deoxythymidine ([ 3H]dT) into DNA decreases with increasing uv fluence. Inhibition begins within minutes of irradiation, and becomes more pronounced with increasing time after irradiation. The synthesis of form I (covalently closed) molecules is inhibited even more severely than is total incorporation: post-uv incorporation is predominantly into replication intermediates. In contrast to previous reports, we find that replication intermediates labeled after uv resemble those in unirradiated cells, and contain covalently closed parental strands. DNA strands made after uv are approximately the size of parental DNA which has been cleaved at pyrimidine dimers by a uv endonuclease, indicating that they do not extend past dimers. The hypothesis that replication forks are halted upon encountering pyrimidine dimers in the template strand is consistent with these data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call