Abstract

AimsIt has been shown that up-regulation of E3 ubiquitin ligase seven-in-absentia-homolog 2 (Siah2) and activation of Hippo signaling pathway effector yes-associated protein (YAP) are involved in the development of pulmonary arterial hypertension (PAH). However, it is still unclear whether Siah2 activates YAP in monocrotaline (MCT)-induced PAH rat models. Main methodsIntraperitoneal injection of MCT was used to induce PAH rat models. The right ventricular systolic pressure (RVSP), right ventricle hypertrophy index (RVHI), percentage of medial wall thickness (%MT), α-SMA, Ki-67 and TUNEL staining were performed to evaluate the development of PAH. Protein levels of Siah2, Lats1/2, YAP phosphorylation and total YAP, and the subcellular localization of YAP were examined using immunoblotting. Proteasome activity was measured by an assay kit. Key findingsThe protein level of Siah2 was significantly increased in MCT-induced PAH rats, this was accompanied with the proteasome-dependent degradation of Lats1/2 and subsequent up-regulation and dephosphorylation of YAP and its nuclear localization. Administration of PAH rats with Siah2 inhibitor Vitamin K3 or proteasome inhibitor MG-132 dramatically suppressed MCT-induced down-regulation of Lats1/2 and activation of YAP, finally reduced RVSP, RVHI, %MT, pulmonary arterial muscularization, pulmonary arterial smooth muscle cells (PASMCs) proliferation and enhanced PASMCs apoptosis in PAH rats. SignificanceSiah2 contributes to the development of MCT-induced PAH by destabilizing Lats1/2 and subsequently stimulating YAP activation. Inhibition of Siah2 or proteasome alleviates pulmonary arterial remodeling through inactivation of YAP, indicating Siah2 ubiquitin ligase as a novel target might have potential value in the management of PAH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call