Abstract
A monoclonal antibody to gastrin was used to study the role of circulating gastrin in mediating acid secretion stimulated by sham feeding in dogs. On separate days, four conscious, fasted, adult mongrel dogs with esophageal and gastric fistulae were pretreated intravenously with either 7 mg of gastrin monoclonal antibody (MAb 28.2), 7 mg of keyhole limpet hemocyanin monoclonal antibody as control, or 12.5 micrograms/kg atropine sulfate. Thirty minutes later, acid secretion was stimulated first by sham feeding for 5 min, then, 60 min later, by an intravenous infusion of a maximum stimulatory dose of histamine (40 micrograms/kg) for 60 min, and after returning to basal, by intravenous infusion of a submaximal stimulatory dose of gastrin (200 pmol.kg-1.h-1) for 60 min. Acid output from secretions collected every 15 min by gravity drainage was determined by titration to pH 7.0 with 0.2 N NaOH. Sham feeding-stimulated acid output (17.7 +/- 5.5 mmol/h) was significantly inhibited by administration of either MAb 28.2 (0 mmol/h) or atropine (1.7 +/- 1.1 mmol/h). Histamine-stimulated acid output (19.6 +/- 3.4 mmol/h) was not reduced by either pretreatment. Gastrin-stimulated acid output (3.9 +/- 0.6 mmol/h) was significantly reduced only by pretreatment with MAb 28.2 (0.1 +/- 0.1 mmol/h) and not by atropine (2.2 +/- 1.4 mmol/h). A background intravenous infusion of pentagastrin (0.5 microgram.kg-1.h-1) restored sham feeding-stimulated acid output blocked by administration of MAb 28.2, although the intrinsic acid response to sham feeding could not be seen with the background pentagastrin infusion. Furthermore, the plasma gastrin response to sham feeding was not blocked by atropine pretreatment. Because immunoneutralization of both gastrin and cholinergic blockade significantly inhibited acid output during sham feeding, circulating gastrin and cholinergic pathways are involved in mediating the cephalic phase of gastric acid secretion in dogs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.