Abstract

BackgroundTransmethylation reactions play an important role on lymphocyte activation and function. S-adenosyl-L-homocysteine hydrolase (SAHH) inhibitors prevent the feedback of transmethylation reactions by S-adenosyl-L-homocysteine (SAH) accumulation, a competitive antagonist of S-adenosylmethionine (SAM)-dependent methyltransferases. However, the role of SAH in solid organ transplantation is currently unclear.MethodsA murine model of cardiac transplantation (BALB/C to C57B/6) was established to assess allograft survival, histology, and T cell infiltration. The reversible SAHH inhibitor, DZ2002, and irreversible SAHH inhibitor, adenosine dialdehyde (AdOx), were used to assess their immunosuppressive effects in murine cardiac transplantation, compared with mice with DMSO.ResultsBoth SAHH inhibitors prolonged the survival of cardiac allografts and alleviated alloimmune response. Notably, AdOx and DZ2002 both eliminated frequencies of Th1 and Th17 in CD4+ T cells in cardiac transplantation, and reduced the frequency of active CD4+ T cell (CD44+ CD62L−). The irreversible SAHH inhibitor facilitated the differentiation of regulatory T cells (Tregs) and increased Bim expression. Furthermore, both SAHH inhibitors alleviated infiltration of CD4+ T cells in cardiac allografts.ConclusionsThe SAHH inhibitors (AdOx and DZ2002) alleviates allograft rejection in cardiac transplantation by inhibition of CD4+ T alloimmune response. SAHH inhibitors, especially DZ2002, is a promising complementary therapeutic agent in organ transplantation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.