Abstract

RPE65 is the isomerase catalyzing conversion of all-trans-retinyl ester (atRE) into 11-cis-retinol in the retinal visual cycle. Crystal structures of RPE65 and site-directed mutagenesis reveal aspects of its catalytic mechanism, especially retinyl moiety isomerization, but other aspects remain to be determined. To investigate potential interactions between RPE65 and lipid metabolism enzymes, HEK293-F cells were transfected with expression vectors for visual cycle proteins and co-transfected with either fatty acyl:CoA ligases (ACSLs) 1, 3, or 6 or the SLC27A family fatty acyl-CoA synthase FATP2/SLCA27A2 to test their effect on isomerase activity. These experiments showed that RPE65 activity was reduced by co-expression of ACSLs or FATP2. Surprisingly, however, in attempting to relieve the ACSL-mediated inhibition, we discovered that triacsin C, an inhibitor of ACSLs, also potently inhibited RPE65 isomerase activity in cellulo. We found triacsin C to be a competitive inhibitor of RPE65 (IC50 = 500 nm). We confirmed that triacsin C competes directly with atRE by incubating membranes prepared from chicken RPE65-transfected cells with liposomes containing 0-1 μM atRE. Other inhibitors of ACSLs had modest inhibitory effects compared with triascin C. In conclusion, we have identified an inhibitor of ACSLs as a potent inhibitor of RPE65 that competes with the atRE substrate of RPE65 for binding. Triacsin C, with an alkenyl chain resembling but not identical to either acyl or retinyl chains, may compete with binding of the acyl moiety of atRE via the alkenyl moiety. Its inhibitory effect, however, may reside in its nitrosohydrazone/triazene moiety.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.