Abstract

ROMK potassium channels are present in the cortical collecting duct (CCD) of the kidney and serve as apical exit pathways for K+ secretion in this nephron segment. K+ secretion in the CCD is regulated by multiple factors. In this study, we show that syntaxin 1A, but not syntaxin 3 or 4, inhibited whole cell ROMK currents in Xenopus laevis oocytes. Syntaxin 1A, but not syntaxin 3 or 4, interacted with the COOH-terminal cytoplasmic domain of ROMK in intro. Coexpression with synaptobrevin 2 reversed inhibition of whole cell ROMK currents by syntaxin 1A. In excised inside-out membranes of oocytes, application of fusion proteins containing the cytoplasmic region of syntaxin 1A to the cytoplasmic face caused a dose-dependent inhibition of ROMK. We further examined regulation of the K+ channels in the CCD by syntaxin 1A. Application of botulinum toxin C1 to the excised inside-out membranes of the CCD caused an increase in the activity of K+ channels. In contrast, application of toxin B had no effects. These results suggest that syntaxin 1A causes a tonic inhibition of the K+ channels in the apical membrane of the CCD. Binding of synaptobrevin 2 to syntaxin 1A during docking and fusion of transport vesicles to the plasma membranes of CCD may lead to activation of these channels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.