Abstract

Inhibition of the type 5 phosphodiesterase and inhibition of Rho kinase are both effective in reducing pulmonary hypertension (PH). Here we investigate whether Rho kinase inhibition is involved in the beneficial effect of the type 5 phosphodiesterase inhibitor sildenafil on PH. Chronic hypoxia-induced PH in rats is associated with an increase in RhoA activity in pulmonary artery that was maximal after 2 days (10.7+/-0.9-fold increase, n=6, P<0.001). The activity of Rho kinase assessed by measuring the level of myosin phosphatase target subunit 1 (MYPT1) phosphorylation was also increased (5.7+/-0.8-fold over control, n=8). Chronic fasudil (30 mg kg(-1) day(-1); 14 days) and sildenafil (25 mg kg(-1) day(-1); 14 days) treatments reduced PH and pulmonary cardiovascular remodelling, and inhibited the MYPT1 phosphorylation in pulmonary artery from hypoxic rats by 82.3+/-3% (n=4) and by 76.6+/-2% (n=4), respectively. The inhibitory effect of sildenafil (10 microM) on MYPT1 phosphorylation was demonstrated by the loss of actin stress fibres in vascular smooth muscle cells. However, in vitro kinase assays indicated that sildenafil had no direct inhibitory action on Rho kinase activity. Sildenafil treatment induced increased RhoA phosphorylation and association to its cytosolic inhibitory protein, guanine dissociation inhibitor (GDI) in pulmonary artery.We propose that sildenafil inhibits RhoA/Rho kinase-dependent functions in pulmonary artery through enhanced RhoA phosphorylation and cytosolic sequestration by GDI. The inhibition of intracellular events downstream of RhoA thus participates in the beneficial effect of sildenafil on PH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.