Abstract

The Rho/Rho–kinase pathway in the central nervous system is involved in the maintenance of dendritic spines, which form the postsynaptic contact sites of excitatory synapses. Inhibition of the Rho–kinase pathway in neuron promotes dendritic spines or branches. In contrast, activation of the Rho/Rho–kinase pathway reduces dendritic spines or branches. Recent studies suggest that morphological changes of dendritic spines occur rapidly, and spine morphology is associated with glutamate sensitivity. The aim of the present study was to determine whether Rho-kinase activity affects glutamate sensitivity in the nucleus tractus solitarii (NTS) of Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR). We first examined the effects of unilateral glutamate injection in the NTS. There was a significantly smaller decrease in arterial pressure in SHR than in WKY. We then examined the depressor responses evoked by unilateral glutamate injection into the NTS after preinjection of Y-27632, a specific Rho-kinase inhibitor. Preinjection of Y-27632 enhanced the glutamate response in both strains. However, the magnitude of the augmentation was significantly greater in SHR than in WKY. Furthermore, we recorded single-unit activity of NTS neurons from medulla brain slice preparations. N -methyl- d -aspartate (NMDA) or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) was applied iontophoretically to the recorded neurons, and neuronal activity was recorded before and after Y-27632 perfusion. Y-27632 perfusion increased the response to NMDA and AMPA. These results suggest that inhibition of Rho-kinase activity in the NTS enhances glutamate sensitivity in WKY and SHR and might improve impaired glutamate sensitivity in SHR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.