Abstract

A novel acrylic monomer bearing acridinyl group, acridine-9-N-acrylamide (Ac-9AA) was synthesized from 9-aminoacridine (9AA) and acryloyl chloride in the presence of triethylamine in dry dichloromethane (CCl2) at room temperature. The synthesized Ac-9AA was identified by IR, MS and 1H NMR spectra. Homopolymer of Ac-9AA was obtained using AIBN as a thermal initiator in THF under 65–70 °C and the average molecular weights (Mw) of poly(Ac-9AA) obtained was very low, being in the order of ca. 103. Copolymer of Ac-9AA and acrylamide was synthesized with thermal initiator and poly(Ac-9AA-co-AM) was characterized by the method of IR, UV–vis and DSC. The photophysical behaviors of Ac-9AA and its polymers were explored by recording the fluorescence spectra in solution, solid and film. In addition, the pH and temperature dependence on fluorescence of the water-soluble poly(Ac-9AA-co-AM) were investigated in detail. The results showed that the relative fluorescence intensity of poly(Ac-9AA-co-AM) had an excellent linear response to temperature in the range of 0–60 °C. Moreover, the fluorescence intensity increased continuously from low pH to high pH while the excitation maxima at 388 nm and emission maxima at 400 nm had redshift after the addition of HCl or NaOH, which results from the fact that the predominance of tautomeric forms of Ac-9AA changed at different medium. This investigation may provide a convenient way to prepared multifunctional macromolecule biomaterial bearing aminoacridine to probe pH and temperature in biological system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call