Abstract

Receptor-interacting protein 3 (RIP3) is a key molecular switch in tumor necrosis factor-induced necroptosis requiring the formation of an RIP3–RIP1 complex. We have recently shown that hippocampal cornu ammonis 1 (CA1) neuronal death induced by 20-min global cerebral ischemia/reperfusion (I/R) injury is a form of programmed necrosis. However, the mechanism behind this process is still unclear and was studied here. Global cerebral ischemia was induced by the four-vessel occlusion method and Necrostatin-1 (Nec-1), a specific inhibitor of necroptosis, was administered by intracerebroventricular injection 1h before ischemia. Normally, in the hippocampal CA1 neurons, RIP1 and RIP3 are located in the cytoplasm. However, after I/R injury, RIP3 was upregulated and translocated to the nucleus while RIP1 was not affected. Nec-1 pretreatment prevented hippocampal CA1 neuronal death and I/R induced changes in RIP3. Decreased level of NAD+ in hippocampus and the release of cathepsin-B from lysosomes after I/R injury were also inhibited by Nec-1. Our data demonstrate that Nec-1 inhibits neuronal death by preventing RIP3 upregulation and nuclear translocation, as well as NAD+ depletion and cathepsin-B release. The nuclear translocation of RIP3 has not been reported previously, so this may be an important role for RIP3 during ischemic injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call