Abstract
Variation in inhibition of real-time PCR was investigated with DNA extracts from 50 aquifer sediment core samples of 5 cm length collected through a 2.5 meter vertical profile across a landfill leachate plume. The inhibition was quantified using an internal control of the green fluorescent protein ( gfp ) gene, which was spiked into the real-time PCR reactions. The inhibition was investigated at two gfp gene concentrations: at 1.7 · 10 7 gfp gene copies/g sediment (5.1 · 10 4 gfp gene copies/PCR reaction) and at 1.7 · 10 5 gfp gene copies/g sediment (5.1 · 10 2 gfp gene copies/PCR reaction). Despite the low TOC content of the sediment (average 0.4 mg C/g dw) the average real-time PCR response was partially inhibited, compared to a reference (pure water), at both high and low gfp concentrations. The relative amplification (reference = 1) was 0.85 ± 0.20 (high) and 0.66 ± 0.23 (low), showing significantly (P < 0.05) stronger inhibition at the lower target gene concentration. The inhibition of the real-time PCR did not show a systematic variation in the vertical profile related to plume position but variations were significant on a small scale of 5–15 cm depth intervals. One of the 50 samples failed to produce a signal with either concentration of the gfp internal control and three other samples inhibited real-time PCR at both high and low gfp concentration. These 4 samples, which were the samples with the highest inhibition, were the only DNA extracts with a visible brown colouration, indicating contents of humic-like substances. Elevated absorbance at 400 nm of these samples also indicated that humic-like substances were responsible for inhibition. However, other factors not associated with either absorbance or TOC may have contributed to the inhibition in less inhibited samples since the variation in real-time PCR response could not be sufficiently explained by absorbance or TOC. The results of this study suggest that an internal control is needed in real-time PCR reactions with DNA from environmental samples due to variation in inhibition to correctly quantify the number of target genes, especially at low target gene concentrations, when dilution of DNA extracts is not practical.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.