Abstract

The objective of this investigation was to determine the role of Pyk2, an intracellular nonreceptor protein tyrosine kinase for postadhesive inflammatory cell migration, on airway inflammation and hyperresponsiveness in immune-sensitized mice. Blockade of Pyk2 was effected by intraperitoneal administration of dominant-negative C-terminal Pyk2 fused to a TAT protein transduction domain (TAT-Pyk2-CT). Ovalbumin challenge elicited infiltration of both eosinophils and lymphocytes into airways, increased mucus-containing epithelial cells, and caused increased airway hyperresponsiveness to methacholine in immune-sensitized mice. Pretreatment with 10 mg/kg TAT-Pyk2-CT intraperitoneally blocked all of these effects and further decreased secretion of Th2 cytokine IL-4, IL-5, and IL-13 into the bronchoalveolar lavage fluid. Intranasal administration of IL-5 caused eosinophil migration into the airway lumen, which was attenuated by systemic pretreatment with TAT-Pyk2-CT. In each paradigm, treatment with control protein TAT-GFP had no blocking effect. We conclude that Pyk2, which is essential for inflammatory cell migration in vitro, regulates airway inflammation, Th2 cytokine secretion, and airway hyperresponsiveness in the ovalbumin-sensitized mice during antigen challenge in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.