Abstract

Transhydrogenase couples proton translocation across a bacterial or mitochondrial membrane to the redox reaction between NAD(H) and NADP(H). Purified intact transhydrogenase from Escherichia coli was prepared, and its His tag removed. The forward and reverse transhydrogenation reactions catalysed by the enzyme were inhibited by certain metal ions but a “cyclic reaction” was stimulated. Of metal ions tested they were effective in the order Pb 2+ > Cu 2+ > Zn 2+ = Cd 2+ > Ni 2+ > Co 2+. The results suggest that the metal ions affect transhydrogenase by binding to a site in the proton-transfer pathway. Attenuated total-reflectance Fourier-transform infrared difference spectroscopy indicated the involvement of His and Asp/Glu residues in the Zn 2+-binding site(s). A mutant in which βHis91 in the membrane-spanning domain of transhydrogenase was replaced by Lys had enzyme activities resembling those of wild-type enzyme treated with Zn 2+. Effects of the metal ion on the mutant were much diminished but still evident. Signals in Zn 2+-induced FTIR difference spectra of the βHis91Lys mutant were also attributable to changes in His and Asp/Glu residues but were much smaller than those in wild-type spectra. The results support the view that βHis91 and nearby Asp or Glu residues participate in the proton-transfer pathway of transhydrogenase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.