Abstract

Vascular endothelial growth factor (VEGF) is supposed to contribute to the pathogenesis of allergic airway disease. VEGF expression is regulated by a variety of stimuli such as nitric oxide, growth factors, and hypoxia-inducible factor-1 alpha (HIF-1α). Recently, inhibition of the mammalian target of rapamycin (mTOR) has been shown to alleviate cardinal asthmatic features, including airway hyperresponsiveness, eosinophilic inflammation, and increased vascular permeability in asthma models. Based on these observations, we have investigated whether mTOR is associated with HIF-1α-mediated VEGF expression in allergic asthma. In studies with the mTOR inhibitor rapamycin, we have elucidated the stimulatory role of a mTOR-HIF-1α-VEGF axis in allergic response. Next, the mechanisms by which mTOR is activated to modulate this response have been evaluated. mTOR is known to be regulated by phosphoinositide 3-kinase (PI3K)/Akt or protein kinase C-delta (PKC δ) in various cell types. Consistent with these, our results have revealed that suppression of PKC δ by rottlerin leads to the inhibition of PI3K/Akt activity and the subsequent blockade of a mTOR-HIF-1α-VEGF module, thereby attenuating typical asthmatic attack in a murine model. Thus, the present data indicate that PKC δ is necessary for the modulation of the PI3K/Akt/mTOR signaling cascade, resulting in a tight regulation of HIF-1α activity and VEGF expression. In conclusion, PKC δ may represent a valuable target for innovative therapeutic treatment of allergic airway disease.

Highlights

  • Allergic asthma is one of the most common respiratory diseases, and is characterized by chronic eosinophilic airway inflammation, reversible airway obstruction, increased mucus production, and non-specific airway hyperresponsiveness (AHR) [1]

  • Interleukin (IL)-4, IL-5, and IL-13, which are produced by Th2 cells, are all related to AHR and inflammatory changes in the airway through the activation of eosinophils [2]

  • Asthmatic airway inflammation is usually accompanied by increased vascular permeability and plasma extravasation [1]

Read more

Summary

Introduction

Allergic asthma is one of the most common respiratory diseases, and is characterized by chronic eosinophilic airway inflammation, reversible airway obstruction, increased mucus production, and non-specific airway hyperresponsiveness (AHR) [1]. These effects are attributed to T-helper (Th2) cells, together with other inflammatory factors, including B cells, mast cells, eosinophils, cytokines, and chemokines. Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogenic peptide with key roles in angiogenesis and vascular remodeling [4]. The VEGF level in asthmatic subjects interrelates closely with disease activity, and correlates inversely with the dimension of airway caliber [6]. VEGF might be one of the crucial mediators in allergic airway disease

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call