Abstract

A large number of PKC inhibitors are positively charged. We evaluated the structural features of cationic amphiphiles which are necessary for inhibiting PKC. Many of these compounds were derivatives of cholesterol, which possesses a hydrophobic backbone which does not perturb hydrocarbon packing in membrane bilayers. In addition, they contain a tertiary or quaternary nitrogen functionality in the head group. All designed cholesterol-based amphiphiles inhibit PKC activity; the potency of the amphiphile correlates with the presence of positive charge. Quaternary ammonium amphiphiles are 10-fold more potent than their tertiary amine counterparts, generally inhibiting in the 10-60 microM range using the Triton mixed micelle assay. Aside from charge, factors such as the structure of the amine-containing head group, its length from the hydrocarbon moiety, or the number of amine groups on the amphiphile did not markedly influence inhibitor potency. In contrast, the hydrocarbon backbone did influence potency: cationic amphiphiles containing a steroid backbone were more potent inhibitors of PKC than their straight-chain analogues. Changing the nature of the hydrocarbon from a sterol to an alkyl group lowers the pK of the amine head group so that the straight-chain analogues are no longer cationic in the conditions in the PKC assay. The results of these studies suggest that a combination of positive charge and a bilayer-stabilizing structural characteristic provides a basis for the rational design of PKC inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.