Abstract

Skeletal muscle atrophy caused by unloading is accompanied by increased proteolysis and decreased protein synthesis. It is established that in conditions of muscle unloading, concentration of free amino acids is increased. We hypothesized that proteasome inhibition may decrease amino acid accumulation in skeletal muscle and prevent the atrophy. To test this hypothesis, we treated rats with bortezomib (a proteasome inhibitor) during 7-day hindlimb suspension. Content of key signaling proteins of various signaling pathways was measured by Western-blotting; mRNA level of E3 ligases by RT-PCR, rate of protein synthesis by SUnSET technique. Soleus muscle weight and intensity of the protein synthesis in the groups of “hindlimb suspension” (HS) and “HS + bortezomib” (HSB) were equally reduced as compared to control. Levels of MuRF-1 and MAFbx mRNAs, content of MuRF-1 and calpain-1 proteins, and level of the protein ubiquitination were increased only in the HS group and remained unchanged in the HSB group as compared to the control group. We conclude that inhibition of proteasomes during m. soleus unloading prevents increase in activity of some components of catabolic signaling pathways. However, this is not sufficient to reduce rate of the atrophic processes in skeletal muscle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call