Abstract

BackgroundDiastolic dysfunction is emerging as a leading cause of heart failure in aging population. Induction of hypoxia tolerance and reprogrammed cell metabolism have emerged as novel therapeutic strategies for the treatment of cardiovascular diseases. Methods and resultsIn the present study, we showed that deletion of sirtuin 3 (SIRT3) resulted in a diastolic dysfunction together with a significant increase in the expression of prolyl hydroxylases (PHD) 1 and 2. We further investigated the involvement of PHD in the development of diastolic dysfunction by treating the 12–14 months old mice with a PHD inhibitor, dimethyloxalylglycine (DMOG) for 2 weeks. DMOG treatment increased the expression of hypoxia-inducible factor (HIF)-1α in the endothelium of coronary arteries. This was accompanied by a significant improvement of coronary flow reserve and diastolic function. Inhibition of PHD altered endothelial metabolism by increasing glycolysis and reducing oxygen consumption. Most importantly, treatment with DMOG completely reversed the pre-existing diastolic dysfunction in the endothelial-specific SIRT3 deficient mice. ConclusionsOur findings demonstrate that inhibition of PHD and reprogrammed cell metabolism can reverse the pre-existed diastolic dysfunction in SIRT3 deficient mice. Our study provides a potential therapeutic strategy of induction of hypoxia tolerance for patients with diastolic dysfunction associated with coronary microvascular dysfunction, especially in the aging population with reduced SIRT3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call