Abstract

Activator of protein 1 (AP-1) is a heterodimeric transcription factor composed of various members of the Jun and Fos families and binds to DNA at specific AP-1 binding sites. AP-1 transcriptional activity is increased by phosphorylation at serine residues in the c‑Jun component of AP-1. In the present study, the proliferation of MCF-7 breast cancer cells was found to be suppressed by tamoxifen (TAM)-activated c-Jun through the protein kinase C (PKC) pathway. The molecular mechanism by which c‑Jun activation induces antiproliferative signals in estrogen receptor (ER)-positive MCF-7 human breast cancer cells remains unknown. TAM inhibited the proliferation of ER-positive MCF-7 human breast cancer cells and ER-negative MDA-MB-435 human breast cancer cells and 48 h incubation with 10 µM TAM led to inhibition of 80% of proliferation. In addition, no significant difference in c-Jun mRNA and protein levels was detected in MCF-7 and MDA-MB-435 cells stimulated by TAM for 48 h. TAM treatment of MCF-7 cells activated the transcriptional activity of AP-1, which responds specifically to phorbol ester. To determine the role of c-Jun in the antiproliferation of MCF-7 cells stimulated by TAM, the inhibition rates of MCF‑7 cells were correlated with c‑Jun expression and stimulation of TAM. Results showed that the inhibition rate of TAM-stimulated MCF-7 cells was positively regulated by overexpression of c-Jun and negatively regulated by underexpression of c-Jun. Overall, these results indicate that the TAM-stimulated antiproliferation of MCF-7 cells is positively regulated by c-Jun through activation of the PKC pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call