Abstract

Glioblastoma stem cells (GSCs) play a pivotal role in the initiation, progression, resistance to treatment, and relapse of glioblastoma multiforme (GBM). Thus, identifying potential therapeutic targets and drugs that interfere with the growth of GSCs may contribute to improved treatment outcomes for GBM. In this study, we first demonstrated the functional role of protein arginine methyltransferase 1 (PRMT1) in GSC growth. Furamidine, a PRMT1 inhibitor, effectively inhibited the proliferation and tumorsphere formation of U87MG-derived GSCs by inducing cell cycle arrest at the G0/G1 phase and promoting the intrinsic apoptotic pathway. Moreover, furamidine potently suppressed the in vivo tumor growth of U87MG GSCs in a chick embryo chorioallantoic membrane model. In particular, the inhibitory effect of furamidine on U87MG GSC growth was associated with the downregulation of signal transducer and activator of transcription 3 (STAT3) and key GSC markers, including CD133, Sox2, Oct4, Nanog, aldehyde dehydrogenase 1, and integrin α6. Our results also showed that the knockdown of PRMT1 by small interfering RNA significantly inhibited the proliferation of U87MG GSCs in vitro and in vivo through a molecular mechanism similar to furamidine. In addition, combined treatment with furamidine and berbamine, a calcium/calmodulin-dependent protein kinase II gamma (CaMKIIγ) inhibitor, inhibited the growth of U87MG GSCs more strongly than single-compound treatment. The increased antiproliferative effect of combining the two compounds resulted from a stronger downregulation of STAT3-mediated downstream GBM stemness regulators through dual PRMT1 and CaMKIIγ function blockade. In conclusion, these findings suggest that PRMT1 and its inhibitor, furamidine, are potential novel therapeutic targets and drug candidates for effectively suppressing GSC growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.