Abstract

Caffeine has been found to potentiate the lethal effects of sulphur mustard (SM) and N-methyl- N-nitrosourea (MNU) in a line of Chinese hamster cells but not in a line of HeLa cells. The sensitization of SM-treated cells by caffeine was S phase specific, and persisted for up to 24 h after alkylation of asynchronous cell cultures. The sensitization of MNU-treated cells, however, was not S phase specific but persisted for up to 50 h after the initial alkylation. Possible explanations for this difference between these two types of alkylating agent were discussed. Previously, evidence was presented which suggested that the alkylation-induced delay in the time of the peak rate of DNA synthesis in Chinese hamster cells was associated with the operation of post-DNA replication repair mechanism in these cells. Caffeine has now been found to reverse this alkylation-induced delay of DNA synthesis in both SM- and MNU-alkylated Chinese hamster cells. It is therefore proposed that caffeine sensitizes alkylated cells by inhibition of a post-replication DNA repair mechanism. No support was obtained for the alternative possibility that caffeine inhibits alkylation-induced excision repair of damaged DNA. The role of DNA repair in the production of the lethal mutagenic and cytological effects of alkylating agents is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call