Abstract

Gingipains, proteolytic enzymes produced by the periodontal pathogen Porphyromonas gingivalis, are regarded as virulence factors in the pathogenesis of periodontitis. Inhibition of gingipain activity therefore may have therapeutic potential, and it has been suggested that chlorhexidine may inhibit the activities of these enzymes. The purposes of the present study were to examine systematically the inhibitory effects of chlorhexidine on three purified gingipains and to determine the effect of Zn(II) on chlorhexidine inhibition. The activities of lys-gingipain (Kgp) and two forms of arg-gingipain (RgpB and HRgpA) were measured in the presence of varying concentrations of chlorhexidine and with chlorhexidine supplemented with Zn(II). Inhibition constants (K(i)'s) were determined for chlorhexidine alone and in the presence of Zn(II). Fractional inhibitory constant indices were calculated to assess the synergy of the chlorhexidine-Zn(II) inhibition. RgpB, HRgpA, and Kgp were all inhibited by chlorhexidine with K(i)'s in the micromolar range. For RgpB and HRgpA, the inhibitory effects of chlorhexidine were enhanced 3-30-fold by Zn(II). The chlorhexidine-Zn(II) interaction was synergistic for inhibition of HRgpA and RgpB. For Kgp, the effect of Zn(II) on chlorhexidine inhibition was antagonistic. Chlorhexidine is an effective inhibitor of gingipains, and the inhibition of R-gingipains is enhanced by Zn(II). A mixture of chlorhexidine and Zn(II) may be useful as an adjunct in the treatment of periodontitis and in the post-treatment maintenance of periodontitis patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call