Abstract
Carbonyl reductase 1 (CBR1) reduces the anticancer anthracyclines doxorubicin and daunorubicin into the cardiotoxic metabolites doxorubicinol and daunorubicinol. We evaluated whether the cardioprotectant monoHER inhibits the activity of polymorphic CBR1. We performed enzyme kinetic studies with monoHER, CBR1 (CBR1 V88 and CBR1 I88) and anthracycline substrates. We also characterized CBR1 inhibition by the related flavonoids triHER and quercetin. MonoHER inhibited the activity of CBR1 V88 and CBR1 I88 in a concentration-dependent manner. The IC(50) values of monoHER were lower for CBR1 I88 compared to CBR1 V88 for the substrates daunorubicin and doxorubicin (daunorubicin, IC(50)-CBR1 I88 = 164 microM vs. IC(50)-CBR1 V88 = 219 microM; doxorubicin, IC(50)-CBR1 I88 = 37 microM vs. IC(50)-CBR1 V88 = 59 microM; p < 0.001). Similarly, the flavonoids triHER and quercetin exhibited lower IC(50) values for CBR1 I88 compared to CBR1 V88 (p < 0.001). MonoHER acted as a competitive CBR1 inhibitor when using daunorubicin as a substrate Ki = 45 +/- 18 microM. MonoHER acted as an uncompetitive CBR1 inhibitor for the small quinone substrate menadione Ki = 33 +/- 17 microM. The cardioprotectant monoHER inhibits CBR1 activity. CBR1 V88I genotype status and the type of anthracycline substrate dictate the inhibition of CBR1 activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.