Abstract

Pokeweed antiviral protein (PAP) from Phytolacca americana is a ribosome inactivating protein (RIP) and an RNA N‐glycosidase that removes specific purine residues from the sarcin/ricin (S/R) loop of large rRNA, arresting protein synthesis at the translocation step. PAP is also a cap‐binding protein, and is a potent antiviral agent against many plant, animal, and human viruses. To elucidate the mechanism of RNA depurination, and to understand how PAP recognizes and targets various RNAs, the interactions between PAP and Turnip mosaic virus genome linked protein (VPg) were investigated. VPg can function as a cap analog in cap‐independent translation, and potentially target PAP to uncapped IRES‐containing RNA. In this work, fluorescence spectroscopy and HPLC techniques were used to quantitatively describe PAP depurination activity and PAP‐VPg interactions. PAP binds to VPg with high affinity (29.5 nM); the reaction is enthalpically driven and entropically favored. Further, VPg is a potent inhibitor of PAP depurination of RNA in wheat germ lysate, and competes with structured RNA derived from tobacco etch virus (TEV) for PAP binding. VPg may confer an evolutionary advantage by suppressing one of the plant defense mechanisms, and also suggests the possible use of this protein against the cytotoxic activity of RIPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call