Abstract

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a key regulatory enzyme of glycolysis, which exists in nuclei and functions as a DNA-binding protein as well as a nuclear protein, appears to be modulated by cellular activities. Exposure of quiescent rat smooth muscle cells (SMCs) to platelet-derived growth factor BB (PDGF-BB), which stimulates SMCs proliferation, caused a time-dependent increase in mRNA for GAPDH and its catalytic activity. Treatment of quiescent SMCs with sodium butyrate (SB), which is shown to inhibit PDGF-BB-induced SMC proliferation, caused a time- and concentration-dependent decrease in PDGF-BB-induced GAPDH mRNA expression and its catalytic activity. Nuclear run-on studies revealed that the PDGF-BB-induced rate of GAPDH gene transcription was reduced by about 50% in the presence of 5 mmol/L SB. The protein synthesis inhibitor, cycloheximide, failed to abolish the SB-inhibited PDGF-BB-induced rate of transcription of GAPDH, suggesting that SB is not dependent on ongoing protein synthesis to exert its effects on PDGF-BB-induced GAPDH transcription. Furthermore, measurement of GAPDH mRNA stability at various times after the inhibition of transcription with actinomycin D indicated that 5 mmol/L SB has no significant effect on the half-life of PDGF-BB-induced mRNA. The reduction in PDGF-BB-induced GAPDH expression by SB is probably caused by a cycloheximide-insensitive transcriptional mechanism. Thus, the inhibition of PDGF-BB-induced expression of GAPDH by SB suggests a link between SMC proliferation, energy consumption, and GAPDH gene upregulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.