Abstract

Infections associated with drug resistant strains and biofilms of Candida albicans have necessitated search for novel molecules with antifungal properties. Caffeine, a major component of the most widely consumed beverages, coffee and tea, is known to possess various biological properties. To evaluate antifungal potential, its effect on growth and virulence attributes of C. albicans was studied using standard methodologies. Caffeine showed fungistatic effect on planktonic growth of two strains of C. albicans (including a fluconazole resistant strain), exhibiting minimum inhibitory concentration (MIC) at 12.5 mM concentration. Around 30% decrease in the adhesion of cells in the presence of caffeine indicated considerable anti-adhesion activity. Caffeine prevented formation of biofilms (which are drug resistant forms), in a concentration dependent manner. Analysis by 2,3-bis-(2-methoxy-4-nitro-5sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) metabolic assay and microscopic observations showed inhibition of biofilm development at 25 mM concentration. This study, for the first time demonstrates dietary chemical, caffeine, as a potential inhibitor of growth, adhesion and biofilm formation by C. albicans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.